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A jellium model of interacting electrons has been investigated using scaling arguments on the kinetic and
potential energyKE and PE, respectivelyin d spatial dimensions. We find that the model exhibits no natural
length scale in one dimensidiD), but in 2D and 3D, finite lengths appear indicating a tendency to form
periodic structures. This confirms qualitatively the ideas of Wigner, who many yeaf&ago Wigner, Phys.
Rev.46, 1002(1934] realized the possibility, in three dimensions, below a certain critical electron demsity,
that the effects of the PE due to Coulomb interactions would outweigh those of the KE and that the PE would
be minimized by electrons localizing about sites on a body-centered-cubic lattice. In 4D we find a critical
length for periodicity that is infinite, indicating the impossibility of a stable periodic structure. We have also
cast the model into Landau-Ginzburg functional form with an appropriate order parameter. A minimization
procedure is shown to lead to criteria for lattice formation in terms of electron density and screening length. In
the continuum limit, the problem has been mapped into two coupled nonlinear field equations whose 1D
versions are found to be exactly integrable. A perturbative treatment of these field equations in 2D, at absolute
zero temperature, reveals the emergence of a stable triangular lattice stri810®&3-651X98)09807-9

PACS numbedis): 05.50+q

[. INTRODUCTION tems the anticipated crystallization is an example of a strong-
correlation effect in which electron-electron interactions can-
Many years ago, Wigndrl] realized that, at sufficiently not be treated as weak perturbations since they qualitatively
low densities and temperatures, a plasma of electrons imalter the associated physical properties, and hence nonlinear
mersed in a uniform neutralizing background of positiveeffects, via the Coulomb interaction, become very important.
charge would crystallize into a solid—the so-called Wigner As a starting point for treating the interacting systeniNof
solid (WS). This was despite the fact that there appears to belectrons in ad-dimensional lattice, the so-called jellium
a conflict between a system of classical particles at zero tenmodel[2,3] will be adopted, where the Hamiltonian is given
perature and the quantum case. Classically, one would eby
pect the system to go into a state that minimizes the potential

energy and to be accomplished by putting the electrons on a h? ) e? 1
lattice. Quantum mechanically, the electrons would be gen- H=~ 5 Z Vit 3 & Tri—r,[o2 for d#2,
erally expected to form a uniform density electron gas, at S (2)
zero temperature, because of the kinetic-energy cost of local- 72 2
izing electrons onto lattice sites required by the uncertainty =5 > v+ % Injri—r;| for d=2.

m = i#]

principle. From this same principle it is expected that the
kinetic energy will scale as the inverse square of a typical
interelectronic separationL] and will only become small The above Hamiltonian incorporates the individual kinetic
relative to the potential energy, which scales inversely withenergies for the electrons and their mutual repulsion. The
L, at low densities. Thus one might expect a quantum phasgositive ions are smeared out into a uniform jellium, which
transition in the state of the system from a fluid at highleads to a system with overall charge neutrality. The ap-
densities to a solid at low densities. The crystalline state iproach presented below will be based on the jellium Hamil-
expected to exist not only in the ground state but also atonian and we shall seek conditions for the formation of
finite temperatures. For short-range potentials there exigteriodic charge distributions in @dimensional space.
theorems that eliminate the possibility of long-range order of

the crystalline variety at finite temperatures and in the | gpaTIAL SCALING: NEUTRALIZING BACKGROUND
ground state, but for the long-range Coulomb interaction

they afford no guidance. Quantum effects will become im- We proceed by scaling the spatial variable so that
portant when the temperature falls below the degeneracy

temperature of the electron gas. Furthermore, in such sys- r—r’'=r/s. 2
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As a consequence, the Hamiltonian becomes k?. We now put these terms together following the introduc-
52 ) 1 tion of an order parameter fielg(x), which represents the
e - lectronic degrees of freedom such thé(x)|? is the elec-
Hi=s2 — o= S V24— 570> s elect grees.
517 2m 2. it S .2;&, Iri—ri|% tronic charge density and
for d+#2, (3
® | 1woopas=n ®

where e=4—d. To extract information about a natural

length scale in the model, we investigate the energy funcestablishes the total amoum, of electronic charge on the
tional based on Eg23), which can be represented schemati-lattice with a volumeL®. Following the method of coherent
cally as structures(MCS), we cast the jellium Hamiltonian in an ef-
fective form using the Fourier transform of the electronic

_ d—
E=as’+ps’? for d#2 (4)  order parameter fielf5]

and whend=2, from Eq.(1) we have _
=2 e C)

E=as?+ BIns,

where « and g are constants that are scale independentThus, the energy functional ik space can be written as
Naturally E is to be understood as the expectation value of

H'’ within a multielectron wave functiog. Our next step is ) ) B 4
to minimize the energy functional with respect to the scaling E=§k: (ak®=N)|ygnd “+ 24K |l *1 (10
factor in order to find out whether a finite spacing exists at an
energy minimum. Thus we require wherea parametrizes the KE strength,is a Lagrange mul-
JE tiplier to be chosen such as to provide charge conservation
—=0 at s=s, (5)  given by Eq.(8), and 3 gives the strength of the screened
Js Coulomb repulsion. The main advantage of this approach is
and obtain the decoupling of the Fourier modés wavelengthsin the
description of the electronic degrees of freedom. The proce-
(Bl2a)Y3 for d=1, dure we now wish to follow consists of three stefpsMini-
(— Bl2a)V2 for d=2, miZ:_’:ltiOﬂ with respect tajy in ord_er to obtain an o_ptim_al _
So=Y _ (BI2a) for d=3 (6) choice of the amplitude of the periodic charge-density distri-

bution. (ii) Minimization with respect t&k in order to obtain

a most energetically favorable lattice spaciriij.) Proper

normalization of the electronic charge distribution. Utilizing
D(i)’ we obtain from the condition

0 unlessa=-—p8 for d=4.

Based on this simple analysis we conclude thatd@and 8
positive, a finitely spaced lattice is expected to arise in 1
while in 2D and 3D cases the signs efand B coefficients

must differ. In 4D the scaling factor required for minimiza- I3 =0 (D
tion vanishes, which indicates a preference for an infinitely;p ot

spaced lattice of charges. This is somewhat surprisingly ac-

curate considering the crudity of the approach presented (ak?—)\)

above because these general qualitative results are borne out || >=— 25 (£72+K2). (12

by earlier thermodynamic approactid$. However, in order

to refine the method of investigation, we now intend to rein-p.s jeads to an upper bound condition on the wave vector
troduce the screening background and account for the spatia{1

dependence of the KE term. These improvements will be

especially important in the 2D case. k?<

k3 (13

R|>

IIl. MINIMIZATION IN  k SPACE precluding very short-range interactions. Furthermore, nor-

In the case whed =2, the logarithmic form of the poten- Malization requires that
tial term causes serious difficulties. Consequently, an alter-

. . . . . K T
native line of attack should be devised to deal with this prob- N= f % lPdIk= —— k84—~ | (14
lem. To this end, we recall that ttkeh Fourier component of 0 ld 4p o g2 da+a] ¥
a screened Coulomb interaction takes the form
assuming that is large. Hence,
B

PUO=g2re @) _[NB(d+2)(d+4)] 1o+ s

0™ 77_2d—1a

where £ is a measure of the screening lengh,being a
constant introduced earlier. The Fourier transform of the KEConsequently, we find the value of the Lagrange multiplier
(Laplacian term contributes terms that are proportional toto be
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NB(d+2)(d+4)|#d+4) ) 9 E=ow
= g (16) Ko = K / V3
'kmax kmax
and the total amount of charge on the lattice is conserved. | o | .
The final step is to minimize with respect koonce Eq. K v ke

(12) has been substituted into the functional in E). This \ / Lo
yields \ ot/

(ak?=0)2(£72+K?) /

E=- . 1
> { ap 4
A E.< E<w

Subsequent minimization with respectkaives the follow- b)

ing extrema(see Fig. &

2¢72
3 L

2 _ko
k=0, k=ko or kmang_ (18
wherek=0 corresponds to a local maximuiky is simulta-
neously an upper limit on the physically admissible values of
the wave number in Eq13) and a local maximum, while
Kmax gives rise to two local minima. The corresponding en-

ergy values are ©)
E(kg)=0, E(k=0)= AETN
(ko)=0, E(k=0)=-—73
and
2
E(Kma) = (kg+& )N, (19)

~ 975

whereN is the number of Fourier modes in reciprocal space.
Note that in view of Eq(18) the position of the global en-

ergy minima,* K., iS determined by the screening length
& Thus, wheré =, which corresponds to an infinite screen-

3
H
%

0 <kmax:kO/x/3

[
_——— e - &

N
N

-

~—

kg -

FIG. 1. A schematic illustration of the energy dependef(i)
on the wave numbek, following Eq. (17) for (a) é=«, (b) &
< &<, and(c) £<£&.. The quantities plotted are in arbitrary units.

ing length,k.,=ko/v3 and the energy minimum falls on the tions only quantitatively depend on lattice dimensionatity

point in k space that is the upper linisee Fig. 18)]. As ¢
decreases in magnitudk,,,, shifts towards zerdsee Fig.

and thus indicate a limitation of the approximations used.
The broad features therefore remain the same for each di-

1(b)]. For as long a&,,,#0, a Wigner crystal is expected to mension. In fact, the value of the critical screening length

arise whose lattice periodicity is given y= 2 w/Ky, 5. This
situation persists until

changes only a little between values dfsuch that¢lP
=0.1148?, ¢2P=0.120, and£2P=0.131@2, where£l is

a constant. We must, however, qualify these statements with

NB(d+2)(d+4)] 2+

729 1y

fzfczﬁ[

a word of caution since the calculations involved in this sec-
' tion were very approximate and the energy minimization

conditions may be modified by the requisite corrections. We

at which valuek,,,, becomes 0. Thus, fof<¢., i.e., for
short screening lengthk,,,,=0 giving rise to a single poten-
tial well in the E(k) plot, as shown in Fig. (t). This latter

have therefore tried to arrive at a better estimate of the en-
ergy in Eq.(17) by discretizing the wave number according
to the formulak,=2mn/L. We carried out the requisite sum-

case is characteristic of a disordered state of the electronimations fromn=1 ton=M [6]. Simple algebra leads to the
degrees of freedom. It is worth noting that the above condifollowing result:

6
E=—E W2 (2) L

AL

(2m)?

X(3M?+3M—1)+ X

EM(M+1)(2M +1)(3M*+6M3—3M+1)+

)t

L4

[N2=2aNE72]EM(M+1)(2M + 1) + MA2E72),

[@?6 2—2aN]H5M(M+1)(2M+1)

(20
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Py(ks) T tot
Hl:; kaka+k|2m A mOk0 AmAk+1-m,  (23)
where
£.2k?
0= le[U (24)
/N, and
2
\./ ke A m=(k(1),1(2)|€*/2r 1zl (k+1=m)(1),m(2)).
(25
In the above, each plane-wave stiteis normalized over a
volume, (), so that
k) —exp(ik-r)/Q (26)
andU is fixing the zero level of energy, involving the jellium

background. The Hamiltonian in EQR3) is now utilized to
FIG. 2. An illustration of the cubic polynomid,(k?) in terms ~ Obtain the Heisenberg equation of motion for a particular

of k? as given by Eq(22). The quantities plotted are in arbitrary annihilatorq, so that
units. .
itd.9,=—[Hqy,q,]- . (27

We then retain only the highest-order terms in each of the Calculating the various commutators in Eg87) gives
polynomials inM and introducek.=27M/L, which repre-

sents the highest-order wave number in the sum, analogous i0d-=w +23 A T 28
to ko- This yleldS tqn w, k,Em n,k,kaqukJr n—m:- ( )

_ To translate Eq(28) into the language of fields, we follow
1 2\ 76 L 22 51,5
E=7a"M'ke+s5(a’¢ "~ 2aM)Mk; the prescription that has been termed the method of coherent
+ %()\Z—za)\(z)Mfﬂkgﬂ\zg*ZM. (21) s_tructures(MCS) [5]. This has been fully described in a se-
ries of paper$7-9] and a research monografl. The pro-

. . . ) cedure employs a standard definition of a field variable,
We then differentiaté& with respect tdM to obtain an equa-

tion for the energy extrema ik space. This results in 1 _
w(r>=J—5; exp(—ik-1)gy, (29
P3(kg)5a3kg+ azkg'f' a.lkg'f' a0=0, (22)
with its Hermitian conjugate counterpart. Both sides of Eq.

where ag=a?, ay=a?(é2-2k2), a;=an(ki-2¢72), (28 cannow be multiplied by exp(in- r)/{/Q and summed

andag=(\/&)2. This, clearly, is a cubic equation in terms of OV€r 7 ,
k2. We found approximate values of its roots in two limiting _ASSuming that the volum& over which our plane waves

cases: (i) for é—0; k.=Kk; is a double root of the associ- are normalized has a radi& we find that

ated biquadratic equation. Note that this agrees with our ear- %
lier approximation. (ii) When é—, k.=0 andk.=k, as ZA”'k'mzzmk—ml {1—coglk—m|R)} (30

above. In general, however, for finite and nonzero values

of the screening lengtly, the roots will be shifted and the and

depth of the potential wells around them will also be af- 5

fected. This is shown in Fig. 2. w. =0 ~lelu (31)
This level of approximation has indicated the possibility 72m '

of Wigner lattice formation at small but finite temperatures . . .

in all dimensionalities without singling out the=2 case, Ea_ch of th(_ase EXPressions 1S now exp_an_ded abouta pa_lrtlcular

which occurred in the mean-field approach. To further refind?©Nt: Ko, in reciprocal space in deviations k from this

our analysis we proceed to develop a field-theoretical deP2INt when the wave vectde becomes close tm in mag-
scription. nitude. Retaining only zero-order terms fralm, , , and up

to quadratic contributions frorw, we obtain the nonlinear
Schralinger equation with a potenti&l for the field ¢,

IV. FIELD-THEORETIC INVESTIGATIONS

21,2 (22 2
. 0 ih kO fi 2
A. Spinless particles iAo = > le|U | g+ p Vi— > V2y

The starting point in the present analysis is to consider the
second quantized form of the multielectron Hamiltonian in a

3e?
plane-wave basis formulation. This takes the fd&h ) ' (32)

+ Mw(ﬁ
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1/[04 exp(025r2) +1]
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FIG. 4. Plot of the damped oscillatory solution of H84) as
given in Eq.(39). The quantities plotted are in arbitrary units.

1 2 3 4 5 r

FIG. 3. Comparison of the numerical nodeless solution of Eq'Unfortunater, the version of the Emden equation corre-
(34)_ with its _estimate given in Eq37). The quantities plotted are in sponding to Eq(34) does not satisfy the Painleygoperty
arbitrary units. except in four dimensions and hence one should not expect
to find an exact solution to this problem. We have analyzed a
class of damped oscillatory solutions through numerical
emeans, which, asymptotically behave as

The central gradient term on the right of E§2) may now
be eliminated by transforming to a moving reference fram
so that new independent coordinates become

d(r)~or e " for r—w (39

(33

X'=x—ut, and in the vicinity of the origin they can be approximated by

see Fig. 4
wherev is chosen so that fiv =|%2%kq/m|. ( g

Stationary solutions are then easily found by settifig
= ¢ exp(—iEyt/h), whereg is spatially dependent only. We
find that the equation for the field’s amplitudeis

d’¢ «kd¢

W‘F FW:AQS—’_ B¢3

—r'k
Br)=do o1

r/ 1 (39)
where ¢y andr’ are parameters to be fitted an&@=<1 is

the Jacobi elliptic modulus for the elliptic sn function above.
The problem with these solutions in the present context,

(34)

In Eqg. (34) it has been assumed thétis real, k=1 in two
dimensionsx=2 in three dimensions{=d—1 in genera),
andA andB are constants defined by

however, is that they cannot be properly normalized in 3D as
our extensive numerical efforts demonstrated. Without arbi-
trary joining procedures they do not result in solutions that

would represent a periodic lattice in 2D or 3D. Although

2m ﬁzké localization and quasiperiodicity properties can be clearly
T h? ﬁ_|e|U_E0 (39 seen through these solutions, Wigner lattice formation by a
single scalar field equation remains elusive. In order to rem-
and edy this deficiency, we now propose to consider a field-
) theoretical model involving two spin projection fields for
B 2m 3e electronic degrees of freedom.
=77 1R’ (36)

We comment that we expeétto be small relative t@® since B. Fields with spin

E, represents the total energy of the system. In this limit, Eq. Our starting point is similar to that in Sec. IV A with the
(34) reduces to the familiar Emden equatid©]. However, Hamiltonian given by[13]

only a very limited set of solutions is available in 2D for this

case. Equatior{34), when A<0 andB>0, has been ana-

lyzed by Alfimov etal. [11], who found two classes of | =
physically meaningful solutions:(a) radially symmetric e
and localized “bumplike” solutions andb) solutions that

are localized in one independent variable and periodic in the

other. Another recent papgt2] found an approximate ana-

lytical nodeless bump solution in 3D when the equation’sWheres, o’ == 3 denote the components of spin, which will

coefficients are scaled 8= —1 andB= +1, in which case be identified with the corresponding indices. Again we use
(see Fig. 3 Heisenberg’s equation of motion for the spin-up and spin-

down annihilator, respectively. The commutators are
straightforward to evaluate and we find that

T T AT
0Ok, kot klEm Ay 1, mAke) o Ame Ak +1—m)o »

!
o0

(40

#(r)=[0.04 ex§0.252)+ 1]~ 12 37
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17.0:9,)+ = @, 0+ + % [A n,k,le+Qm+Q(7y+k—m)+ - Ak,n,mQLQerQ(H p—m+t An,k,mQLQm—Q(mk—mH

_Ak,n,mQE—Qm+Q(k+r,—m)—] (41)

and

iﬁ&tqn— = ank— + g’] [An,k,mql—qm—q(n-%—k—m)— - Ak,n,mql—qm—Q(kﬁ— n—m)— + Ar],k,mql+qm+Q(77+k—m)—

_Ak,n,mql+qm*q(k+777m)+]. “2)

1/2

A 1/2
cosh¢ coshé,— (w—>
2

sinh ¢;sinh &,.

(49

We now introduce spin-dependent fields by analogy with the )N
spin-independent case. Thus A =(

Yo (N=0""2 exp(—ik-r)qy:
“ (43

w,(r)=Q*1’2; exp(—ik-r)Qgy_ .

These solutions correspond to two coupled sech-like bump
solitons. The reader is referred to the paper by Briiilal.

[14] for graphical illustration and asymptotic analysis. The
above authors also found coupled two-soliton solutions. Fur-

thermore, a class of elliptic solutions can be found following
) ) ) ) . Clarkson and MansfielfL5]. In order to bring Eqs(45) and
The single gradient is again transformed away by using 46) into a suitable form(provided\ , =\ _=\) for com-

moving frame of reference, Ey” being assumed to have parison with this latter paper, we first set the dependent vari-
different valuesg, andE_, for each field. The net result of 5pes into a linear combination form

this whole procedure is that the two fieldg, and ¢_,
written as P tip_=u; (50)

w+:¢+e*iE+t/fL and Qb_:¢_e7iE7t/ﬁ (44) and

¢+_i¢_:U2 (51)

so that the equations of motion become

satisfy the following equations of motion:

w2V2¢+=)\+¢5++)\2[|¢+|2¢++|¢,|2¢+] (45)
w,V2U =\Up+\,UcU, (52)
and
and
VZhp_=N_o_+N[|d_|Pp_+|d |?P_], (46
w,V2¢ b+ p-2p_+|p.?p-1. (40 0,72y~ Ny g2 -
wherew,, A\, A_, and\, are constants.

We shall assume for simplicity that both, and¢_ are For\ =0, which can always be arranged by the choic& of

andE_ and scaling the dependent variables, this system of

real—a fuller analysig13] writing ea_ch_ﬂeld n mo_dulus- equations results in two coupled ordinary differential equa-
argument form makes this a possibility. Interestingly, AN ons

identical set of differential equations has been investigated in

connection with self-localized states in molecular chains U”+2U2v=0,

[14]. These authors point out that the above equations are (54)
completely integrable in one dimension. The solutions are V"4 2UV2=0.

listed as

The equations are solved by settig=—UV giving a
Weierstrass elliptic function equation

_(()\—M)M)UZ coshé,
=

)\20)2 A (47) W’'= 6W2— Jo, (55)
[ =x )N\ P2 sinh &, wheregs, is an arbitrary constant. Thus bdthandV satisfy
2= N, A Lame equations of the form
where " —2p(Z)w=0, (56)
N, |12 112 where p is the Weierstrass elliptic functionW(z)
&= (_+ (X+Xo), &= <_> (x—%,) (49 =p(z;92,93), wheregs is an arbitrary constant. Finally, an
w3 w3 exact solution may be found in the form
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(@ (b) y
FIG. 5. A 3D plot(a) and a contour plotb) of the solution given in Eq(67). The quantities plotted are in arbitrary units.

o(z+a) o(z—a) above. We therefore turn our attention to perturbative meth-

w(z)=c.exp—z(a)} @ coexp{zs(a)} ~o(zy ' 0dstostudy pattern formation in nonlinear systems—see, for

(57) example, Shtilman and Sivashingkh6] and Pismen and Ne-
pomnyashchy17]. Following these methods, we write Egs.

where {(z) and o(z) are the Weierstrass zeta and sigma(45 and(46) as

functions, respectively, and is any solution ofp(a)=0. ) 3 )

Alternatively, we may multiply both sides of E¢55) by W’ Vi, =—vyid.tedldi+dZd.] (62)

and integrate once to give

and
(W")2=2W3-g,W+c, (58) .
o o Vi =—y ¢ +edditdio ] (62
where ¢ is an integration constant. Equati@d8) is easily
integrated to give Jacobi elliptic functions so that where we assume for convenience that bpthand y_ are
negative, >0, ande is a small parameter in which we ex-
(X—Xp) pand. To begin our procedure we set the field variables as
W=s 7o, K] (59
g2 bi=¢ioted g+, (63
where the elliptic modulug is given by
$p-=¢ _oted 1+, (64)
2 WZ_Wl .
k “War W, (60)  where “0” and “1” denote zeroth and first order, respec-
3 1

tively. Clearly, in zero order we obtain

andW,, W,, andW; are the roots of the polynomial on the

right-hand side of Eq(58). Vihiot¥idio=0 (65)
We observe that elliptic functions are periodic, indicating

the possibility of crystal lattice formation in this one- an

dimensional case, which encourages us to examine the two- V2h -+ —0 66

dimensional case in the next section for latticelike structures. b-0Fv-¢-0=0. (66)

It is clear that the independent variable in each case may be

scaled so thaty, or y_=+1. We follow Shtilman and
Earlier analysis in this paper has clearly demonstrated th&ivashinsky17] and observe that one particularly important

possibility of localization of electronic charges in one-, two-, Solution of these two equations with. =y_=1 is

and higher-dimensional spaces. At the same time, it appears

highly improbable that exact analytical solutions exist be-

yond the one-dimensional case for these fields as shown

V. LATTICE FORMATION IN TWO DIMENSIONS

X V3
¢0=¢d_o=A cosx+2B cos<§> cos(?)y. (67
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It should be emphasized that only whé&m=2A does this T'=(K-1)T. (71)
describe a triangular pattern in two dimensions. We have

displayed this foA=1 in Fig. 5. In an obvious way it is seen WhenK=1, the solutions of Eq.70) are oscillatory whereas
that to first order ine we obtain T takes a form linear ity. If K>1, Sis again periodic and@

is represented by a decaying or exponentially increasing
V2 1+ di=0 ¢§O+ ¢§0¢+0] (68)  function. Obviously for 6<K <1, T is oscillatory as isS but
for K<O0, T is periodic wherea$& becomes hyperbolic. As
and regards stability, as only the decreasing exponentials may be
chosen, the contribution frof with K=1 may cause prob-
V2 1+ b 1= o+ d% ool (69 lems because of a possible functionyofncreasing beyond
) _ ) ) limit. This may be avoided either by assumikgt 1 or else
The solution of each of these equat|0ns will be g|Ven by qhat the “arbitrary” constant premumply"']g/ inT for K
complementary function, when the left-hand side is zero=1 may be set to zero.
plus any particular integral when the right-hand side is in- \We now investigate the terms that can arise from any
cluded. If we take Eq(68) as an example, setting tempo- particular integral of Eq(68) when the right-hand side is
rarily 6=0, we may solve this using a separation of variablesexpressed as
technique settings . ;=S(x)T(y). Denoting the separation
constant byK we then have R=25l

X vi o3
A cosx+2B co > co 7y , (72

which may be reexpressed using elementary trigonometric
and sum rules to give

i
ol o222

S'=-KS (70)

x

A3 o[l
R:7{cos X+cosx}+3A°By =

1 3X
2|72

+3B2A{3[cos X+ 1]+ cosx}

N

X[cogv3y)+1]+4B3

% + cos(x/iy)] . (73

To find particular integralgPI) of the various terms, we 7;—7?—3@
concentrate on one patrticular type, namely ¢p8€0s(y,y).

We simply assume that we may take which is highly unlikely to vanish since we expepf- |

bpi= 110 y,X)COS YoY). 74y ~(€%ag)/(h?/2mag), wherem is the electronic mass and
a, the first Bohr radius. We therefore conclude that secular
For this to be so, we require, to be given by terms inx or y multiplied by oscillatory functions are un-
likely to arise and that the first-order componeuts, and
wi=(1—y2—y3)~ L. (75  ¢_, will be stable against large increasesxror y. This

then leads to our final conclusion that introducing two
This prescription will clearly not work for the terms coupled spin field variables in the description of the Wigner
(A3/2)cosx, 3AZB cosf/2)cos¢3y/2), 3B2A cosx, and problem in 2D space results in a fairly robust periodic lattice.
— 2B3cos{/2) cos§/3y/2) twice sincey?+ y2=1 and the de-
nominator of Eq(75) is zero. That is, the sum of “frequen-
cies” from x andy components resonates with that from the

complementary function. This is easily overcome if, for ex-  The present paper lays down some routes by which fur-
ample, we choose the term in caghen a particular integral  ther analytical work may prove possible in the future relating
is (x/2)sinx.  Similarly, a particular integral for to Wigner solidification ind spatial dimensions. Our empha-
cosf/2)cosf3y/2) is x sin(x/2)cos{/3y/2). Both of these sis has consistently been placed on the effects due to nonlin-
last examples contain an amplitude varying witand there-  earity, which itself stems from Coulomb interactions be-
fore may lead to instability ok, , or ¢_;. A particular  tween electrons. The scaling arguments that have been
integral with ay multiplicative factor may also be found in a presented at the beginning of the paper encouraged us on this
similar way. In the unperturbed case, represented by Ecpath by being consistent with the thermodynamics of Wigner
(65), the associated frequencies afg, and \'y_, where crystallisation[2,18]. Landau-Ginzburg phenomenology has
the y- arise from the difference in energy between the totalthen been presented in this paper, and, again, it makes some
energy €,) and the positive background energy divided byrather general predictions that should act as guidelines for
the magnitude of the kinetic energy, i.e., the ratio of thefuture analytical work. Numerical work based on density-
repulsive Coulomb energy to kinetic energy. Thus the defunctional theory is already available t=3 andd=2 di-
nominator of Eq(75) would becomgwith y, ,y_#0) mensions, and agrees well with quantum computer simula-

VI. SUMMARY AND FUTURE DIRECTIONS
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tion results, as recently reviewed by Senatore and Marckpin arrangement in the 3D bcc lattice is aeNantiferro-
[19]. magnet in which the up-spins reside on the sites of one of the
Finally, we have presented nonlinear field equations detwo interpenetrating simple cubic lattices, with down-spins
rived from the MCS formalisni5], first of all for spinless on the other. However, following the general work of Carr
particles and, more importantly, for two coupled fields with[21], we know that at the very low densities required in 3D
spin 3. In this context it is relevant to mention earlier work for the absolute zero phase transition to a Wigner crystal of
on instabilities of a single Slater determinant ground-statgocalized electrons, wave-function overlaps are so small that
wave function for jellium, where plane wavéwhich are  the energy difference between the ferromagnetic Wigner

certainly appropriate in the high-density limit in B@re re-  ¢rystal and the antiferromagnetic state is extremely small
placed by Bloch waves having the periodicity of the Wigner[22],

body-centered-cubic lattice. One is then discussing charge-
density waves, as considered in the early work of YoL8lg

as well as Young and Marcf2]. Edwards and Hille[18]

later considered more generally instabilities of the Slater de-
terminant of plane waves, following pioneering studies of This research has been supported by a collaborative
Overhausef20]. These instabilities are known to occur in NATO grant awarded to J.M.D. and J.A.T. and an NSERC
3D jellium at much higher densities than the phase transitiomesearch grant awarded to J.A.T. The visit of N.H.M. to the
to the Wigner crystal. Turning finally to long-range magnetic University of Alberta has been supported by the Institute of
order in Wigner solids, the most natural description of theTheoretical Physics.
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