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Scaling and nonlinear field studies of the jellium model for Wigner electron systems
in d dimensions
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A jellium model of interacting electrons has been investigated using scaling arguments on the kinetic and
potential energy~KE and PE, respectively! in d spatial dimensions. We find that the model exhibits no natural
length scale in one dimension~1D!, but in 2D and 3D, finite lengths appear indicating a tendency to form
periodic structures. This confirms qualitatively the ideas of Wigner, who many years ago@E. P. Wigner, Phys.
Rev.46, 1002~1934!# realized the possibility, in three dimensions, below a certain critical electron density,rc ,
that the effects of the PE due to Coulomb interactions would outweigh those of the KE and that the PE would
be minimized by electrons localizing about sites on a body-centered-cubic lattice. In 4D we find a critical
length for periodicity that is infinite, indicating the impossibility of a stable periodic structure. We have also
cast the model into Landau-Ginzburg functional form with an appropriate order parameter. A minimization
procedure is shown to lead to criteria for lattice formation in terms of electron density and screening length. In
the continuum limit, the problem has been mapped into two coupled nonlinear field equations whose 1D
versions are found to be exactly integrable. A perturbative treatment of these field equations in 2D, at absolute
zero temperature, reveals the emergence of a stable triangular lattice structure.@S1063-651X~98!09807-9#

PACS number~s!: 05.50.1q
im
ve
e
b

em
e

nt
n

en
a

c
int
h
ica
l
it
a
gh
e

a
x

r o
th
io
m
a
sy

ng-
n-

vely
near
nt.

n

tic
he

ch
ap-
il-
of
I. INTRODUCTION

Many years ago, Wigner@1# realized that, at sufficiently
low densities and temperatures, a plasma of electrons
mersed in a uniform neutralizing background of positi
charge would crystallize into a solid—the so-called Wign
solid ~WS!. This was despite the fact that there appears to
a conflict between a system of classical particles at zero t
perature and the quantum case. Classically, one would
pect the system to go into a state that minimizes the pote
energy and to be accomplished by putting the electrons o
lattice. Quantum mechanically, the electrons would be g
erally expected to form a uniform density electron gas,
zero temperature, because of the kinetic-energy cost of lo
izing electrons onto lattice sites required by the uncerta
principle. From this same principle it is expected that t
kinetic energy will scale as the inverse square of a typ
interelectronic separation (L) and will only become smal
relative to the potential energy, which scales inversely w
L, at low densities. Thus one might expect a quantum ph
transition in the state of the system from a fluid at hi
densities to a solid at low densities. The crystalline stat
expected to exist not only in the ground state but also
finite temperatures. For short-range potentials there e
theorems that eliminate the possibility of long-range orde
the crystalline variety at finite temperatures and in
ground state, but for the long-range Coulomb interact
they afford no guidance. Quantum effects will become i
portant when the temperature falls below the degener
temperature of the electron gas. Furthermore, in such
PRE 581063-651X/98/58~1!/318~9!/$15.00
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tems the anticipated crystallization is an example of a stro
correlation effect in which electron-electron interactions ca
not be treated as weak perturbations since they qualitati
alter the associated physical properties, and hence nonli
effects, via the Coulomb interaction, become very importa

As a starting point for treating the interacting system ofN
electrons in ad-dimensional lattice, the so-called jellium
model@2,3# will be adopted, where the Hamiltonian is give
by

H52
\2

2m (
i

¹ i
21

e2

2 (
iÞ j

1

ur i2r j ud22 for dÞ2,

~1!

52
\2

2m (
i

¹ i
21

e2

2 (
iÞ j

lnur i2r j u for d52.

The above Hamiltonian incorporates the individual kine
energies for the electrons and their mutual repulsion. T
positive ions are smeared out into a uniform jellium, whi
leads to a system with overall charge neutrality. The
proach presented below will be based on the jellium Ham
tonian and we shall seek conditions for the formation
periodic charge distributions in ad-dimensional space.

II. SPATIAL SCALING: NEUTRALIZING BACKGROUND

We proceed by scaling the spatial variable so that

r→r 85r /s. ~2!
318 © 1998 The American Physical Society
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As a consequence, the Hamiltonian becomes

H85s2F2
\2

2m (
i

¹ i
21

e2

2
s2«(

iÞ j

1

ur i2r j ud22G
for dÞ2, ~3!

where «542d. To extract information about a natura
length scale in the model, we investigate the energy fu
tional based on Eq.~3!, which can be represented schema
cally as

E5as21bsd22 for dÞ2 ~4!

and whend52, from Eq.~1! we have

E5as21b lns,

where a and b are constants that are scale independe
Naturally E is to be understood as the expectation value
H8 within a multielectron wave functionf. Our next step is
to minimize the energy functional with respect to the scal
factor in order to find out whether a finite spacing exists at
energy minimum. Thus we require

]E

]s
50 at s5s0 ~5!

and obtain

s05H ~b/2a!1/3

~2b/2a!1/2

2~b/2a!

0 unlessa52b

for d51,
for d52,
for d53,
for d54.

~6!

Based on this simple analysis we conclude that fora andb
positive, a finitely spaced lattice is expected to arise in
while in 2D and 3D cases the signs ofa andb coefficients
must differ. In 4D the scaling factor required for minimiz
tion vanishes, which indicates a preference for an infinit
spaced lattice of charges. This is somewhat surprisingly
curate considering the crudity of the approach presen
above because these general qualitative results are born
by earlier thermodynamic approaches@4#. However, in order
to refine the method of investigation, we now intend to re
troduce the screening background and account for the sp
dependence of the KE term. These improvements will
especially important in the 2D case.

III. MINIMIZATION IN k SPACE

In the case whend52, the logarithmic form of the poten
tial term causes serious difficulties. Consequently, an a
native line of attack should be devised to deal with this pr
lem. To this end, we recall that thekth Fourier component o
a screened Coulomb interaction takes the form

F~k!.
b

j221k2 , ~7!

where j is a measure of the screening length,b being a
constant introduced earlier. The Fourier transform of the
~Laplacian! term contributes terms that are proportional
c-
-

t.
f

g
n

y
c-
d
out

-
ial
e

r-
-

E

k2. We now put these terms together following the introdu
tion of an order parameter fieldc(x), which represents the
electronic degrees of freedom such thatuc(x)u2 is the elec-
tronic charge density and

E uc~x!u2ddx5N ~8!

establishes the total amount,N, of electronic charge on the
lattice with a volumeLd. Following the method of coheren
structures~MCS!, we cast the jellium Hamiltonian in an ef
fective form using the Fourier transform of the electron
order parameter field@5#

c~x!5(
k

cke
ik–x. ~9!

Thus, the energy functional ink space can be written as

E5(
k

H ~ak22l!ucku21
b

j221k2 ucku4J , ~10!

wherea parametrizes the KE strength,l is a Lagrange mul-
tiplier to be chosen such as to provide charge conserva
given by Eq.~8!, and b gives the strength of the screene
Coulomb repulsion. The main advantage of this approac
the decoupling of the Fourier modes~or wavelengths! in the
description of the electronic degrees of freedom. The pro
dure we now wish to follow consists of three steps.~i! Mini-
mization with respect tock in order to obtain an optima
choice of the amplitude of the periodic charge-density dis
bution. ~ii ! Minimization with respect tok in order to obtain
a most energetically favorable lattice spacing.~iii ! Proper
normalization of the electronic charge distribution. Utilizin
~i!, we obtain from the condition

]E/]ck50 ~11!

that

ucku252
~ak22l!

2b
~j221k2!. ~12!

This leads to an upper bound condition on the wave vec

k2<
l

a
[k0

2 ~13!

precluding very short-range interactions. Furthermore, n
malization requires that

N5E
0

k0
ucku2ddk5

p

4b
2dak0

d14F 1

d12
2

1

d14G ~14!

assuming thatj is large. Hence,

k05FNb~d12!~d14!

p2d21a G1/d14

. ~15!

Consequently, we find the value of the Lagrange multipl
to be
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l5aFNb~d12!~d14!

p2d21a G2/~d14!

~16!

and the total amount of charge on the lattice is conserve
The final step is to minimize with respect tok once Eq.

~12! has been substituted into the functional in Eq.~10!. This
yields

E52(
k

H ~ak22l!2~j221k2!

4b J . ~17!

Subsequent minimization with respect tok gives the follow-
ing extrema~see Fig. 1!:

k50, k5k0 or kmax
2 5

k0
2

3
2

2j22

3
, ~18!

wherek50 corresponds to a local maximum,k0 is simulta-
neously an upper limit on the physically admissible values
the wave number in Eq.~13! and a local maximum, while
kmax gives rise to two local minima. The corresponding e
ergy values are

E~k0!50, E~k50!52
l2j22N

4b

and

E~kmax!52
a2

27b
~k0

21j22!3N, ~19!

whereN is the number of Fourier modes in reciprocal spa
Note that in view of Eq.~18! the position of the global en
ergy minima,6kmax, is determined by the screening leng
j. Thus, whenj5`, which corresponds to an infinite scree
ing length,kmax5k0 /) and the energy minimum falls on th
point in k space that is the upper limit@see Fig. 1~a!#. As j
decreases in magnitude,kmax shifts towards zero@see Fig.
1~b!#. For as long askmaxÞ0, a Wigner crystal is expected t
arise whose lattice periodicity is given bya52p/kmax. This
situation persists until

j5jc[&FNb~d12!~d14!

p2d21a G22/~d14!

,

at which valuekmax becomes 0. Thus, forj,jc , i.e., for
short screening lengths,kmax50 giving rise to a single poten
tial well in the E(k) plot, as shown in Fig. 1~c!. This latter
case is characteristic of a disordered state of the electr
degrees of freedom. It is worth noting that the above con
.

f

-

.

ic
i-

tions only quantitatively depend on lattice dimensionalityd
and thus indicate a limitation of the approximations us
The broad features therefore remain the same for each
mension. In fact, the value of the critical screening lengthjc

changes only a little between values ofd such thatjc
1D

50.1148jc
0, jc

2D50.120jc
0, andjc

3D50.1310jc
0, wherejc

0 is
a constant. We must, however, qualify these statements
a word of caution since the calculations involved in this s
tion were very approximate and the energy minimizati
conditions may be modified by the requisite corrections. W
have therefore tried to arrive at a better estimate of the
ergy in Eq.~17! by discretizing the wave number accordin
to the formulakn52pn/L. We carried out the requisite sum
mations fromn51 to n5M @6#. Simple algebra leads to th
following result:

FIG. 1. A schematic illustration of the energy dependenceE(k)
on the wave numberk, following Eq. ~17! for ~a! j5`, ~b! jc

,j,`, and~c! j<jc . The quantities plotted are in arbitrary unit
E52
1

4 H a2
~2p!6

L6
1

42 M ~M11!~2M11!~3M416M323M11!1
~2p!4

L4 @a2j2222al# 1
30 M ~M11!~2M11!

3~3M213M21!1
~2p!2

L2 @l222alj22# 1
6 M ~M11!~2M11!1Ml2j22J . ~20!
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We then retain only the highest-order terms in each of
polynomials inM and introducekc52pM /L, which repre-
sents the highest-order wave number in the sum, analog
to k0. This yields

E5 1
7 a2M7kc

61 1
5 ~a2j2222al!M5kc

5

1 1
3 ~l222alj22!M3kc

21l2j22M . ~21!

We then differentiateE with respect toM to obtain an equa-
tion for the energy extrema ink space. This results in

P3~kc
2![a3kc

61a2kc
41a1kc

21a050, ~22!

where a35a2, a25a2(j2222k0
2), a15al(k0

222j22),
anda05(l/j)2. This, clearly, is a cubic equation in terms
kc

2. We found approximate values of its roots in two limitin
cases: ~i! for j→0; kc5k0 is a double root of the assoc
ated biquadratic equation. Note that this agrees with our
lier approximation. ~ii ! Whenj→`, kc50 andkc5k0 as
above. In general, however, for finite and nonzero val
of the screening lengthj, the roots will be shifted and the
depth of the potential wells around them will also be
fected. This is shown in Fig. 2.

This level of approximation has indicated the possibil
of Wigner lattice formation at small but finite temperatur
in all dimensionalities without singling out thed52 case,
which occurred in the mean-field approach. To further refi
our analysis we proceed to develop a field-theoretical
scription.

IV. FIELD-THEORETIC INVESTIGATIONS

A. Spinless particles

The starting point in the present analysis is to consider
second quantized form of the multielectron Hamiltonian in
plane-wave basis formulation. This takes the form@5#

FIG. 2. An illustration of the cubic polynomialP3(kc
2) in terms

of kc
2 as given by Eq.~22!. The quantities plotted are in arbitrar

units.
e
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s

-

e
e-

e

H15(
k

vkqk
†qk1 (

k,l ,m
Dk,l ,mqk

†ql
†qmqk1 l 2m , ~23!

where

vk5
\2k2

2m
2ueuU ~24!

and

Dk,l ,m5^k~1!,l ~2!ue2/2r 12u~k1 l 2m!~1!,m~2!&.
~25!

In the above, each plane-wave stateuk& is normalized over a
volume,V, so that

uk&→exp~ ik•r !/AV ~26!

andU is fixing the zero level of energy, involving the jellium
background. The Hamiltonian in Eq.~23! is now utilized to
obtain the Heisenberg equation of motion for a particu
annihilatorqh so that

i\] tqh52@H1 ,qh#2 . ~27!

Calculating the various commutators in Eq.~27! gives

i\] tqh5vh12(
k,m

Dh,k,mqk
†qmqk1h2m . ~28!

To translate Eq.~28! into the language of fields, we follow
the prescription that has been termed the method of cohe
structures~MCS! @5#. This has been fully described in a s
ries of papers@7–9# and a research monograph@5#. The pro-
cedure employs a standard definition of a field variable,

c~r !5
1

AV
(

k
exp~2 ik•r !qk , ~29!

with its Hermitian conjugate counterpart. Both sides of E
~28! can now be multiplied by exp(2ih•r )/AV and summed
over h.

Assuming that the volumeV over which our plane waves
are normalized has a radiusR, we find that

2Dh,k,m5
e2p

2Vuk2mu2 $12cos~ uk2muR!% ~30!

and

vh5
\2h2

2m
2ueuU. ~31!

Each of these expressions is now expanded about a parti
point, k0 , in reciprocal space in deviations ink from this
point when the wave vectork becomes close tom in mag-
nitude. Retaining only zero-order terms fromDh,k,m and up
to quadratic contributions fromvh we obtain the nonlinear
Schrödinger equation with a potentialU for the fieldc,

i\] tc5S \2k0
2

2m
2ueuU Dc1

i\2k0

m
¹c2

\2

2m
¹2c

1c†ccS 3e2

16RD . ~32!
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The central gradient term on the right of Eq.~32! may now
be eliminated by transforming to a moving reference fra
so that new independent coordinates become

t85t,
~33!

x85x2vt,

wherev is chosen so that2\v5u\2k0 /mu.
Stationary solutions are then easily found by settingc

5f exp(2iE0t/\), wheref is spatially dependent only. W
find that the equation for the field’s amplitudef is

d2f

dr2 1
k

r

df

dr
5Af1Bf3. ~34!

In Eq. ~34! it has been assumed thatf is real,k51 in two
dimensions,k52 in three dimensions (k5d21 in general!,
andA andB are constants defined by

A5
2m

\2 S \2k0
2

2m
2ueuU2E0D ~35!

and

B5
2m

\2

3e2

16R
. ~36!

We comment that we expectA to be small relative toB since
E0 represents the total energy of the system. In this limit,
~34! reduces to the familiar Emden equation@10#. However,
only a very limited set of solutions is available in 2D for th
case. Equation~34!, when A,0 and B.0, has been ana
lyzed by Alfimov et al. @11#, who found two classes o
physically meaningful solutions: ~a! radially symmetric
and localized ‘‘bumplike’’ solutions and~b! solutions that
are localized in one independent variable and periodic in
other. Another recent paper@12# found an approximate ana
lytical nodeless bump solution in 3D when the equatio
coefficients are scaled toA521 andB511, in which case
~see Fig. 3!

f~r !>@0.04 exp~0.25r 2!11#21/2. ~37!

FIG. 3. Comparison of the numerical nodeless solution of
~34! with its estimate given in Eq.~37!. The quantities plotted are in
arbitrary units.
e

.

e

s

Unfortunately, the version of the Emden equation cor
sponding to Eq.~34! does not satisfy the Painleve´ property
except in four dimensions and hence one should not ex
to find an exact solution to this problem. We have analyze
class of damped oscillatory solutions through numeri
means, which, asymptotically behave as

f~r !;f0r 21e2r for r→` ~38!

and in the vicinity of the origin they can be approximated
~see Fig. 4!

f~r !>f0

sn~r 2r 8,k!

r 2r 8
, ~39!

wheref0 and r 8 are parameters to be fitted and 0<k<1 is
the Jacobi elliptic modulus for the elliptic sn function abov
The problem with these solutions in the present conte
however, is that they cannot be properly normalized in 3D
our extensive numerical efforts demonstrated. Without a
trary joining procedures they do not result in solutions th
would represent a periodic lattice in 2D or 3D. Althoug
localization and quasiperiodicity properties can be clea
seen through these solutions, Wigner lattice formation b
single scalar field equation remains elusive. In order to re
edy this deficiency, we now propose to consider a fie
theoretical model involving two spin projection fields fo
electronic degrees of freedom.

B. Fields with spin

Our starting point is similar to that in Sec. IV A with th
Hamiltonian given by@13#

H25(
ks

vkqks
† qks1 (

k,l ,m
s,s8

Dk,l ,mqks
† qls8

† qms8q~k1 l 2m!s ,

~40!

wheres,s857 1
2 denote the components of spin, which w

be identified with the corresponding7 indices. Again we use
Heisenberg’s equation of motion for the spin-up and sp
down annihilator, respectively. The commutators a
straightforward to evaluate and we find that

.

FIG. 4. Plot of the damped oscillatory solution of Eq.~34! as
given in Eq.~39!. The quantities plotted are in arbitrary units.
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i\] tqh15vhqk11(
k,m

@Dh,k,mqk1
† qm1q~h1k2m!12Dk,h,mqk1

† qm1q~k1h2m!11Dh,k,mqk2
† qm2q~h1k2m!1

2Dk,h,mqk2
† qm1q~k1h2m!2# ~41!

and

i\] tqh25vhqk21(
k,m

@Dh,k,mqk2
† qm2q~h1k2m!22Dk,h,mqk2

† qm2q~k1h2m!21Dh,k,mqk1
† qm1q~h1k2m!2

2Dk,h,mqk1
† qm2q~k1h2m!1#. ~42!
th

g

f

an
d
in
a

ar

mp

he
ur-

ng

ari-

of
a-

n

We now introduce spin-dependent fields by analogy with
spin-independent case. Thus

c1~r !5V21/2(
k

exp~2 ik•r !qk1 ,

~43!

c2~r !5V21/2(
k

exp~2 ik•r !qk2 .

The single gradient is again transformed away by usin
moving frame of reference, ‘‘E0’’ being assumed to have
different values,E1 andE2 , for each field. The net result o
this whole procedure is that the two fields,c1 and c2 ,
written as

c15f1e2 iE1t/\ and c25f2e2 iE2t/\ ~44!

satisfy the following equations of motion:

v2¹2f15l1f11l2@ uf1u2f11uf2u2f1# ~45!

and

v2¹2f25l2f21l2@ uf2u2f21uf1u2f2#, ~46!

wherev2 , l1 , l2 , andl2 are constants.
We shall assume for simplicity that bothf1 andf2 are

real—a fuller analysis@13# writing each field in modulus-
argument form makes this a possibility. Interestingly,
identical set of differential equations has been investigate
connection with self-localized states in molecular cha
@14#. These authors point out that the above equations
completely integrable in one dimension. The solutions
listed as

f15S ~l22l1!l1

l2v2
D 1/2 coshj2

D
,

~47!

f25S ~l22l1!l2

l2v2
D 1/2 sinh j2

D
,

where

j15S l1

v2
D 1/2

~x1x0!, j25S l2

v2
D 1/2

~x2x0! ~48!
e

a

in
s
re
e

D5S l1

v2
D 1/2

coshj1coshj22S l2

v2
D 1/2

sinh j1sinh j2 .

~49!

These solutions correspond to two coupled sech-like bu
solitons. The reader is referred to the paper by Brizhiket al.
@14# for graphical illustration and asymptotic analysis. T
above authors also found coupled two-soliton solutions. F
thermore, a class of elliptic solutions can be found followi
Clarkson and Mansfield@15#. In order to bring Eqs.~45! and
~46! into a suitable form~providedl15l25l) for com-
parison with this latter paper, we first set the dependent v
ables into a linear combination form

f11 if25u1 ~50!

and

f12 if25u2 ~51!

so that the equations of motion become

v2¹2u15lu11l2u1
2u2 ~52!

and

v2¹2u25lu21l2u2
2u1 . ~53!

For l50, which can always be arranged by the choice ofE1

and E2 and scaling the dependent variables, this system
equations results in two coupled ordinary differential equ
tions

U912U2V50,
~54!

V912UV250.

The equations are solved by settingW52UV giving a
Weierstrass elliptic function equation

W956W22g2 , ~55!

whereg2 is an arbitrary constant. Thus bothU andV satisfy
Laméequations of the form

v922`~z!v50, ~56!

where ` is the Weierstrass elliptic functionW(z)
5`(z;g2 ,g3), whereg3 is an arbitrary constant. Finally, a
exact solution may be found in the form
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FIG. 5. A 3D plot ~a! and a contour plot~b! of the solution given in Eq.~67!. The quantities plotted are in arbitrary units.
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v~z!5c1exp$2zz~a!%
s~z1a!

s~z!
1c2exp$zz~a!%

s~z2a!

s~z!
,

~57!

where z(z) and s(z) are the Weierstrass zeta and sigm
functions, respectively, anda is any solution of`(a)50.
Alternatively, we may multiply both sides of Eq.~55! by W8
and integrate once to give

~W8!252W32g2W1c, ~58!

where c is an integration constant. Equation~58! is easily
integrated to give Jacobi elliptic functions so that

W5snS ~x2x0!

&g2

,kD , ~59!

where the elliptic modulusk is given by

k25
W22W1

W32W1
~60!

andW1 , W2 , andW3 are the roots of the polynomial on th
right-hand side of Eq.~58!.

We observe that elliptic functions are periodic, indicati
the possibility of crystal lattice formation in this one
dimensional case, which encourages us to examine the
dimensional case in the next section for latticelike structu

V. LATTICE FORMATION IN TWO DIMENSIONS

Earlier analysis in this paper has clearly demonstrated
possibility of localization of electronic charges in one-, two
and higher-dimensional spaces. At the same time, it app
highly improbable that exact analytical solutions exist b
yond the one-dimensional case for these fields as sh
o-
s.

e
,
rs

-
n

above. We therefore turn our attention to perturbative me
ods to study pattern formation in nonlinear systems—see
example, Shtilman and Sivashinsky@16# and Pismen and Ne
pomnyashchy@17#. Following these methods, we write Eq
~45! and ~46! as

¹2f152g1f11«d@f1
3 1f2

2 f1# ~61!

and

¹2f252g2f21«d@f2
3 1f1

2 f2#, ~62!

where we assume for convenience that bothg1 andg2 are
negative,d.0, and« is a small parameter in which we ex
pand. To begin our procedure we set the field variables

f15f101«f111¯ , ~63!

f25f201«f211¯ , ~64!

where ‘‘0’’ and ‘‘1’’ denote zeroth and first order, respec
tively. Clearly, in zero order we obtain

¹2f101g1f1050 ~65!

and

¹2f201g2f2050. ~66!

It is clear that the independent variable in each case ma
scaled so thatg1 or g2511. We follow Shtilman and
Sivashinsky@17# and observe that one particularly importa
solution of these two equations withg15g251 is

f105f205A cosx12B cosS x

2D cosS)2 D y. ~67!
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It should be emphasized that only whenB52A does this
describe a triangular pattern in two dimensions. We h
displayed this forA51 in Fig. 5. In an obvious way it is see
that to first order in« we obtain

¹2f111f115d@f10
3 1f20

2 f10# ~68!

and

¹2f211f215d@f20
3 1f10

2 f20#. ~69!

The solution of each of these equations will be given b
complementary function, when the left-hand side is ze
plus any particular integral when the right-hand side is
cluded. If we take Eq.~68! as an example, setting tempo
rarily d50, we may solve this using a separation of variab
technique settingf115S(x)T(y). Denoting the separation
constant byK we then have

S952KS ~70!

and
s

-
he
x
l

a
E

ta
by
he
de
e

a
,
-

s

T95~K21!T. ~71!

WhenK51, the solutions of Eq.~70! are oscillatory whereas
T takes a form linear iny. If K.1, S is again periodic andT
is represented by a decaying or exponentially increas
function. Obviously for 0,K,1, T is oscillatory as isS but
for K,0, T is periodic whereasS becomes hyperbolic. As
regards stability, as only the decreasing exponentials ma
chosen, the contribution fromT with K51 may cause prob-
lems because of a possible function ofy increasing beyond
limit. This may be avoided either by assumingKÞ1 or else
that the ‘‘arbitrary’’ constant premultiplyingy in T for K
51 may be set to zero.

We now investigate the terms that can arise from a
particular integral of Eq.~68! when the right-hand side is
expressed as

R52dFA cosx12B cosS x

2D cosS)2 yD G3

, ~72!

which may be reexpressed using elementary trigonome
sum rules to give
R5
A3

2
$cos 3x1cosx%13A2BH 1

2 FcosS 5x

2 D1cosS 3x

2 D G1cosS x

2D J cosS)y

2 D13B2A$ 1
2 @cos 2x11#1cosx%

3@cos~)y!11#14B3H 1

2 FcosS 3x

2 D1cosS x

2D G1cosS x

2D J H 1

2 FcosS 3)y

2 D2cosS)y

2 D G1cos~)y!J . ~73!
d
lar
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fur-
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ula-
To find particular integrals~PI! of the various terms, we
concentrate on one particular type, namely cos(g1x)cos(g2y).
We simply assume that we may take

fPI5m1cos~g1x!cos~g2y!. ~74!

For this to be so, we requirem1 to be given by

m15~12g1
22g2

2!21. ~75!

This prescription will clearly not work for the term
(A3/2)cosx, 3A2B cos(x/2)cos()y/2), 3B2A cosx, and
22B3cos(x/2)cos()y/2) twice sinceg1

21g2
251 and the de-

nominator of Eq.~75! is zero. That is, the sum of ‘‘frequen
cies’’ from x andy components resonates with that from t
complementary function. This is easily overcome if, for e
ample, we choose the term in cosx, then a particular integra
is (x/2)sinx. Similarly, a particular integral for
cos(x/2)cos()y/2) is x sin(x/2)cos()y/2). Both of these
last examples contain an amplitude varying withx and there-
fore may lead to instability off11 or f21 . A particular
integral with ay multiplicative factor may also be found in
similar way. In the unperturbed case, represented by
~65!, the associated frequencies areAg1 and Ag2, where
the g7 arise from the difference in energy between the to
energy (E0) and the positive background energy divided
the magnitude of the kinetic energy, i.e., the ratio of t
repulsive Coulomb energy to kinetic energy. Thus the
nominator of Eq.~75! would become~with g1 ,g2Þ0)
-

q.

l

-

g72g1
22g2

2,

which is highly unlikely to vanish since we expectug7u
;(e2/a0)/(\2/2ma0

2), wherem is the electronic mass an
a0 the first Bohr radius. We therefore conclude that secu
terms inx or y multiplied by oscillatory functions are un
likely to arise and that the first-order componentsf11 and
f21 will be stable against large increases inx or y. This
then leads to our final conclusion that introducing tw
coupled spin field variables in the description of the Wign
problem in 2D space results in a fairly robust periodic lattic

VI. SUMMARY AND FUTURE DIRECTIONS

The present paper lays down some routes by which
ther analytical work may prove possible in the future relati
to Wigner solidification ind spatial dimensions. Our empha
sis has consistently been placed on the effects due to no
earity, which itself stems from Coulomb interactions b
tween electrons. The scaling arguments that have b
presented at the beginning of the paper encouraged us on
path by being consistent with the thermodynamics of Wig
crystallisation@2,18#. Landau-Ginzburg phenomenology ha
then been presented in this paper, and, again, it makes s
rather general predictions that should act as guidelines
future analytical work. Numerical work based on densi
functional theory is already available ind53 andd52 di-
mensions, and agrees well with quantum computer sim
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tion results, as recently reviewed by Senatore and Ma
@19#.

Finally, we have presented nonlinear field equations
rived from the MCS formalism@5#, first of all for spinless
particles and, more importantly, for two coupled fields w
spin 1

2 . In this context it is relevant to mention earlier wo
on instabilities of a single Slater determinant ground-st
wave function for jellium, where plane waves~which are
certainly appropriate in the high-density limit in 3D! are re-
placed by Bloch waves having the periodicity of the Wign
body-centered-cubic lattice. One is then discussing cha
density waves, as considered in the early work of Young@3#
as well as Young and March@2#. Edwards and Hillel@18#
later considered more generally instabilities of the Slater
terminant of plane waves, following pioneering studies
Overhauser@20#. These instabilities are known to occur
3D jellium at much higher densities than the phase transi
to the Wigner crystal. Turning finally to long-range magne
order in Wigner solids, the most natural description of t
A

,

,

h

-

e

r
e-

-
f

n

e

spin arrangement in the 3D bcc lattice is a Ne´el antiferro-
magnet in which the up-spins reside on the sites of one of
two interpenetrating simple cubic lattices, with down-spi
on the other. However, following the general work of Ca
@21#, we know that at the very low densities required in 3
for the absolute zero phase transition to a Wigner crysta
localized electrons, wave-function overlaps are so small
the energy difference between the ferromagnetic Wig
crystal and the antiferromagnetic state is extremely sm
@22#.
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